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1. Introduction

The use of a discriminant function in assigning an individual
as a member of one of certain well defined groups is well known.

An extended formulation of this problem recognizes the possi
bility that a given individual may not belong to any of the specified
groups but to an unknown group whose existence has not been
established earlier. Thus, rules have to be formulated for assigning a
new individual to one of a specified set of groups or to none. Such
decision rules enable us to bring to light new groups by the chance
occurrence of individuals from them.

A generalization of the classical problem is the assignment of
an observed individual as a number of one of specified clusters of
groups. We shall first consider the classical problem and then
discuss some extensions and generalizations.

The problem of assigning a new individual to one of a finite
number of groups to which he may belong is referred to in statistical
literature as one of classification or discrimination. It has been

recently suggested that identification is a more appropriate
terminology.

In the statistical approach to the problem, we first characterize
each group (of the possible groups) by the distribution of certain
measurements on individuals of that group. The characters must
be such that their distributions in the different groups are all different.
Then, on the basis of the measurements ascertained on a new indi
vidual, a decision rule (a procedure) is provided for deciding on the
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individual's membership in one of the groups. We shall first con
sider the situation for which a satisfactory solution is available.

Let X denote the vector of measurements (random variable)
and/i(:y), ,/s(f) the probability density functions of f in the k
groups. Furthermore, let us consider a new individual to be assigned
to one of the groups as randomly observed from a mixed population
consisting of individuals of the k groups in known proportions
7^1) The quantities Tt^, , are referred to as prior pro
babilities and if the value of ^ on an observed individual is f, then
by applying Bayes theorem the posterior probabilities of the k groups
(given x) are

^T/l(f) /i\
' WiW ^

Knowing these probolities, the consequences of any decision pro
cedure can be examined.

A general decision rule is to throw a k faced die with pro
babilities

j ; SX,-W = 1 •••(2)

for k faces, depending on the observed value x, and decide on the
/th group if the /th face appears. Such a procedure is known as a
randomized decision rule. If Fj,- is the loss resulting in assigning a
member of the /th group to the yth group then the expected loss for
given X is

=SSK-/;-(f)X,WF,,/57v,/,W]-[XiW5,W+ ... + X,W5,W]...(3)
i j i

where

Siix)= -% ...(4)
j I

is called the /th discriminant score. It is clear that the expected loss
(3) is a minimum when the XW corresponding to the highest dis
criminant score is unity and zero otherwise. Or, when there is no
unique highest discnmiaant score the probabilities X,C*) correspond
ing to the highes; scores can be chosen arbitrarily while the proba
bilities for the rest are chosen to be zero.

In a wide variety of problems we may choose Vu—O, Vij=\
for In such a case, the expected' loss corresponds to the expected
proportion of wrong identifications and the /th discriminant scoore is "

SiM —[—]-r •(5)
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Since the decision rule involves only a comparison of the Si values,
we may drop the constant term in (5) and define the
discriminant score simply as

Si{x)=Ttifi{x) ...(6)

which is proportional to the posterior probability of the ith group
given the observation

A slightlydifferent choice of the loss elements is F,;—Fj for
and Vii=0, i.e., the loss essentially depends on the group to which
an individual belongs but not on the particular wrong group to which
he is assigned. In such a case

= ^ %ir^f,{x) ...{!)

Dropping the constant terms in (7) we may define the ith discriminant
score simply as

SiW = ViTZifi{^ ...(8)

Whatever may be the choice of the discriminant scores like (4) or (6)
or (8), the decision rule is as follows :

(a) If there is a unique highest discriminant score among
then assign the inividual to that group for which the

discriminat score is the highest.

(b) If there is more than one group for which the discriminant
scores areequal and the highest, then assign the individual arbitrarily
to any one of such groups.

2. A?plic\tion OP THE OpriMUM Rule

There are a number of difficulties in the application of the
optimum decision rule in practice.

(0 The quantities needed, viz., the prior probabilities

7ri,...,TCft (9)

and the density functions

(10)

for an application of the optimum decision rule may not be known.
However, they may be estimable from data suitably collected.

(//) While the optimum decision rule lays down a strict
procedure of coming to a decision in all cases, some caution is
necessary in practice. If one discriminant score is considerably large
compared to the others, there need not be any mental reservation in
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arriving at a decision. On the other hand, when the next highest
discriminant scores are close to the highest value, it is probably
wise to consider the individual as belonging to one of the groups in a |
subset chosen on the basis of the highest discriminant scores and
look for further evidence. What is the exact procedure to be follo
wed in such cases?

{Hi) In practice, it may not be possible or desirable to obtain 1
all the measurements on an individual referred to for identification

in one stage. A sequential approach with the possibility of arriving
at a decisin before all the measurements are completed is desirable.
Such a procedure may result in considerable saving (in the long run)
of the measurements some of which may be very expensive to obtain.

(iv) What are the considerations for arriving at the best choice
and sequence of measurements ?

(v) The apriori information that an observed individual belo
ngs to one of the k given groups may be wrong. In fact he may
belong to another unknwn group and it is, therefore, necessary to ~
develop a theory which takes into a:count such a possibility. This
is important in two ways. Firstly, it may enable us to discover a new
group whose existence in the population under consideration has
not yet been established. Secondly, it admits the posstbllity of dis
covering any contamination taking place in the population (on which
we are applying a decision rule) by the injection of individuals from
an outside group. An example is the discovery of cholera cases in ^
Japan a couple of years ago. The symptoms might have been mistaken
as rare manifestations of one of the ailments ordinarily occurring in
Japan if the possibility of a sporadic contamination from an outside '
source had not been kept in mind.

We shall consider these difficuhies one by one and suggest
suitable modifications in the procedure laid down in section 1 of the
paper.

2a. Estimation of the unknown quantities 4

Estimation of the density functions

In practice it may be possible to obtain a sample of indivi
duals from each identified group in which case we may be able to
estimate the distribution of chosen rneasurernents in each group
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separately.

Generally we will have samples of individuals from a mixed
population. If we denote by fi{^> 0;) the density function in the i"*
group, where yi- is a known function but is an unknown parameter,
then the probability density at observed values on n indivi
duals is

n

n r Mj -(11)
1=1

We can then use the method of maximum likelihood or any other
appopriate method to estimate all the unknown parameters,
and In such a scheme, as new individuals come in, fresh
estimates of parameters could be made based on earlier data and the
data on new individuals, considering them as samples from a mixed
population. The estimates so obtained could be used to classify the
new individuals. As observations accomulate more precise estimates
of parameters will become available and the loss due to errors of
estimation thus gets continuously diminished.

Estimation ofprior probabilities

The optimum rule depends on the relative frequencies
of the indiduidueals of the k different groups in the population from
which an idividual to be identified is drawn K ttj. may also be
considered as the relative frequencies with which individuals from
different groups present themselves for identificati on). At the begin
ning, we may have only crude estimates of Tj but as the measure
ments on individuals referred to for identification accumulate, precise
estimates will be available leading to improved decision rules.

For estimating Tt^, , uj. let us assume that the density func
tions A, ,/fc are known. Let ^i, be the observations
on n individuals referred to for identification. Then the probability
density at the observed values is

['"'ifliii) + + '"'Jcfkih)]
...(12)

J=1

We may then apply the method ofmaximum likelihod to estimate
TTft. But the computations will be extremely heavy.

In the problem of differential diagnosis of diseases, the fre-
cjuencies of individuals likely to suffer from different diseases may
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change over time and they may even exhibit seasonal Vitiations
during the course of a year. Estimates appropriate to a given season
and point of time have to be used to obtain the best possible results.
The estimation of relative frequencies as functions of time may notbe
easy. Some research, is necessary in this direction.

2. {b) Sequential Decision Rules

Let be the discriminant score for the /th group based on
the first 7measurements. A sequential decision rule is of the following
type :

(i) Stop further measurements after theyth if

...(13)

and if 5,'̂ ' is the maximum, assign the individual to the ithgroup.
I («) Take additional measurements if

, ...(14)

(/h) If no decision is reached before the />th measurement,
then assign the individual to rth group if

...(15)

If it were possible to continue taking further measurements till
the condition (13) is satisfied, then the decision rule has the property
that the expected risk is smaller than (—5o). But if the process is
truncated at the/7th stage and rule {Hi) is adopted, the expected risk
will be larger than (-Sq)- The exact computation of the expected
risk would be difficult. But it may be possible to obtain some idea
by Montecarlo techniques.

The optimum sequence of measurements depends on the costs
of making the different measurements and the discriminatory power
of different subsets of the measurements. The sequence for which
the total of the cost making the measurements and the loss of wrong
assignments is a minimum at each stage has to be preferred.

2 (c) Detection of "Outside Contamination"

Asmentioned earlier, we should keep open the possibility that
a new individual does not belong to any of the k specified groups.
That is, we should incorporate in our decision rule the possibility
of declaring that a given individual belongs to an unknown group.
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Let US suppose that the measurements have a p variate normal
density in each of the k specified groups and also in the unknown
group to which an individual may belong. Then, on the basis of
measurements ^ on an individual, the likehood ratio criterion for
testing the hypothesis that the individual is a member of one of the
k specified groups is

+ ...(16)
If/M < c (where c is chosen such that the level of significance
has a specified value), we reject the hypothesis and decide that the
individual belongs to an outside group. If/W >c, then we apply
the optimum decision rule for deciding the individual's membership
in one of the k specified groups. The determination of c for a given
level of significance does not seem to be easy. It would be worth
examining whether c can be determined approximately in a simple
way.

The problem may also be examined in an alternative way. Let
us suppose that the mean vector of the measurements is if; in the
/th group and that the dispersion matrix is the same in all the groups
and is equal to A. Let us consider a test of the hypothesis that the
new individual belongs to a group with its mean vector as

+ +^7c!f7c ".(17)
where Xj, are unknown but subject to the condition S'it= l.
The hypothesis does not necessarily specify that the new individual
belongs to one of the k groups. It keeps open the possibility that
he may belong to an outside group which is related to the specified
groups in a special way, as indicated by the equation (17) coimect-
ing the mean values. To test the hypothesis (17) we consider the
test criterion

x2=min (.v-XiM- (18)
where minimization is with respect to Aj subject to the con
dition 2;Ai=I. The statistic (18) has a chisquare distribution on
(p-^+1) degrees of freedom, when the measurements have a
variate normal distribution.

If Ihe is significant at a chosen level of significance, then we
decide that the individual belongs to an outside group. Then

x,2=(x_|i.)'A-i(i-!fi)-x2, ?:=1, k ...(19)
where is as in (18) The statistic (19) for given i is distributed as
on (A:—1) degrees of freedom on the hypothesis that the individual
belongs to the rth group. If

i=/, , k ,..(20)
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then, again, we decide that the individual belongs to an outside
group which is related to the given groups in the manner indicated
in (17). The value of c is determined such that the level of signiii-
cance has a given value (for the null hypothesis that the individual
belongsto one of the k given groups). If such a null hypothesis is not
rejected, we decide to assign the individual to the zth group if

;>^•i2=min{Xl^ ,x\) ...(21)

The procedure suggested in (20) and (21) does not involve the
priori probabilities. If the priori probabilities are known, then we
proceed as follows. Let us represent by T, the vector random
variable

( k h \
\k' /J"

It is known that T is suflScient for the set of populations with mean
values of the form

•••(22)

Let Pi(/), , ^ft(') be the probability densities of T according to
the k specified groups and , tt;. the corresponding prior pro
babilities. Then instead of the statistic (20) we use the test criterion

7^:iPi(0+ + '̂ fcP&(0<« •••(23)

where a is chosen such that the level of significance has a given
value. If the observed t satisfies (23) then again we decide that the
observed individual belongs to an outside group. Otherwise we
use the optimum rule of section I in assigning the individual to one
of the specified groups.

3. Discriminant Function Between Composite Hypothesis and
Related Problems

The discriminant function, as introduced by the late Sir Ronald
Fisher, for deciding between two simple hypotheses (alternative
populations) on the basis of observed data is the logarithm of the
likelihood ratio of two simple hypotheses given the observations. The
question naturally arises as to what is a suitable discriminant
function when the alternative hypotheses are not simple but com
posite. Such a problem isfaced if we want to identify an individual
as belonging to one of two sets of populations. Each set may
consist of several populations (mixed in unknown proportions) of
organisms of pne kind representing different (unknown) stages of
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growth. The object is to decide as to which of two kinds a given
organism belongs when nothing is known about its stage of growth.

3. (a) Discrimination of Composite Hypotheses : General
Methods

Let denote a random variable and the density func
tion depending on a (possibly vector) parameter 0 belonging to a set
(E)' Let_fl'i be the ^pothesisjhat _0 €(^)i, anl be the hypothesis
that 6€(^)2, where (^)i and (H)^ are exclusive subsets of {H). The
problem we consider is that of choosing between the composite hypo
theses //j and on the basis of an observed value of Let us
discuss a few possible approaches to the problem.

Solution based on similar divisions

Let and R^, be two exclusive regions covering the entire
sample space. The regions R^, R^ are sn.id to provide a similar
division of the space if there exist constants e^, such that

R.
P(.^l^)dx=ej for each 0 € Wi

and

R
Pixl^)dx=e^ for each d e (^>3 ...(25)

1

Let us decide to choose if e Ri and x(^ Iq
such a case the errors committed are Cj and e^. For determining
an optimum decision rule, we consider all similar division rule, we
consider all similar divisions and choose the one for which the
magnitudes oferrors are the smallest subject to a given ratio oferrors,
or for which a given linear compound of errors is a minimum.

There are two ways of arriving at such a solution. Let T be
a sufficient statistic (function of £) for 9restricted to (§)i, and let the
same statistic be sufficient also for 9restricted to (H)^. Using the well
known factorization theorem, we may write

p(^/o)=p^//0)p^to/o^ 0e(^)i

^prnp.ixin, e € (ff), ...(26)
where the functions Piix/'J and P^ixlD are independent of 0 and may
be interpreted as conditional densities of the observations given
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If we choose two values ?! € (^Ji and _^2 ^ then the discri
minant function for distinguishing between and 63 is

log pmmiN-

Using the factorizations (26) we have
P(x/6i) _PU, 0i) P^{xjt)
Fixjh) P{t,Qj] •

Taking logarithms .

PixJOi) , P(',ei),, p.ixjt)
P(xiQjy ...(28)

which provides a decomposition of the discriminant function for the
simple hypotheses ?2 as the sum of two discriminant functions,
one based on j alone and another on the conditional distributions
given

It is easy to see that the second component of (28) has the
^me distribution for all 6 belonging to any particular set or

and so it does not discriminate between parameter values within
a given set. When the conditional densities and are
different, we have discrimination between parameter values belonging
to the different sets (or between the hypotheses and H2) by using
the discriminant function log

Note that the success of the method [depends on the conditional
density functions Pi(f/0 and being diff'erent. If T happens to

be sufficient for 9 over the entire range U then P-S^jn and

Pzi^^lO are the same and the equation (28) merely shows that the
discriminant function between two simple hypotheses is an explicit
function of the sufficient statistic.

Solution based on ancillary statistics

Another method is to consider a statistic £ (function of •^) such
that its probability density,

P(£^0)=Pi(5) independent of ? 6 ...(29)

=Pg(£) independent of ^ € W3

or, in o±er words, ^ is an ancillary statistic for £ € (^1 and also
for i € Wj. When PgCi) and PjW are different, the discriminant
function for choosing between and i7j. is provided by the likeli
hood ratio Pi(i'7^2(£)*

.. (27)
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Method of maximum likelihood ratio

A discriminant function which may have wide applicability is
the ratio

sup P(f/9) -f- sup P(f/0) ...(30)
0 e @ 0 e (J)2

Ît will be difficult to give a general discussion of the appli-
cability or of the relative performances of the various, suggested
procedures. We shall, therefore, consider some special cases which
have important applications. In these special cases the various
approaches lead to the same discriminant function.

3. (b) Discrimination of Composite Hypotheses : Special Cases
Let us consider the special cases where X has a variatc

normal distribution.

Problem 1. Let and be defined as follows, where E and
Dstand for expectation and dispersion operators, respectively.

: ^(^)= ?i+a'0x. ...(31)
i/a ; £(^)= + i)0=A

where and £2 are p vectors, Oj, are/c vectors and 5'is j? x/i:
matrix of rank k. The values of and b' are fixed but those
of are arbitrary. The and are composite hypotheses.

For example, each composite hypothesis may consist of
populations representing various stages of growth of an organism.
The mean of any character X, (the ith component of X) for organism
with age t may be written (£(Zi)=«i+p,f, where p,- is the regression
coefficient with time. The regression coefficient p,- is taken to be the
same for two sets of populations but a,- may be different. The
problem is to identify an organism as belonging to one of two sets
of population when the age of the organism is not known.

Considering the general case of (31) it is easy to verify that
the statistic Ba-i £ is sufficient for Oj and also-for Let

?=(£i—O3)+ 0', where 0'=01—02, •
Then

, .,.(32)
= • '(33^

The discriminant function based on Bj-^X alone is, therefore,
(S A-1_S)' (3 a-'£')-i BA-i X
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The discriminant function based on the entire observation ^ is
f Hence applying the result (28), the discriminant function
based on the conditional distr-butions of ^ given B 4-1 X is the
difference

!' A-' {B A-i i)' {B A-i B')-^ B^-^X ... (35)

Now, writing l=(£i—£2) + ^' 0, the expression (35) reduces to

{ax-a^y A-i ^'-(?i-?2)' A-i B' (B B')-^ 5')-i BX

= («i-«2)'[A-1-A-i B^(B A-iB')-! B a-1]^ ...(36)

which depends only on (£1—fa) and is independent of 0 as is to be
expected.

To apply the method of ancillary statistics, let us consider the
statistic where C[s {k—p)xp matrix of rank (p—k) such that
fiC'=o. Then

EiCXiH,)=C £1, D{CXIH^]=.c a C'

E{C ^IH^) = C 02, D{C XjH^)^C a C' ...(37)

under the hypotheses and //g respectively. Thus ^ X is ancillary
under the alternatives in and also in The discriminant func

tion based on £ is

(C ai-Cay)(C A C')-i CX ...(38)

It may be seen that (36) and (38) are the same.

It is easily shown that the method of maximum likelihojd ratio
as defined in (30) also yields the same discriminant function.

Problem 2. In problem I, the dispersion matrices under the
two hypotheses were the same. Let us now consider the alternative
composite hypotheses

•• -D(^)=Ai

Hi : E{X) = aiJ^B'l2^ i5(£)=A2 (39)

where Oj are arbitrary as in problem I.

It is easily seen that B h^-'̂ X is sufficient for 61, while B Kr-'^x
is suiBcient for Jg. Since the two sufficient statistics are riot the same,
the method of conditional distributions cannot be applied, unless one
considers the statistic (^ ^ As"^;^) as jointly sufficient for
and for 62. But such a statistic is too wide.
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But the method of ancillary statistics is applicable since the sta
tistic where Cis as defined in (37), is ancillary under both the
hypotheses. The distributions under and are specified by

E{C ^IH,)^C 21, D{C XJH,) = C Ai C'
E{C XIH,) = C D{C IIH,)= CA3 C' ...(40)

Taking the loarithm of the likelihood ratio we have the discriminant
function, 2(^) equal to

£'{£ Ai £')-i~(C Aa C'yiC
2[£i' £'(£ Ai C')-i_Oa'C'(C Aj C')-ijC X ...(4])

which is quadratic in Using the identity
£{?hi Ar^ B' (B Ar^ £')"'̂ ^ a^-i, 1=1,2 ...(42)

we cane write (41) in terms of Bonly. It may be verified that the
method of maximum likelehood ratio also provides the same quadr
atic discriminant function.

The Linear and quadratic discriminant functions have some spe
cial properties which are discussed in (Rao, 1966).

The Reader is referred to the books by the author (Rao, 1952,
1965) for illustrative examples.
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